Polysulfide speciation and reactivity in chromate-contaminated soil.
نویسندگان
چکیده
Calcium polysulfide (CPS) has been observed to maintain a reducing capacity for prolonged time periods when used to treat Cr(VI)-contaminated soils. This study utilized bulk and micro-X-ray absorption near edge structure (XANES) spectroscopy to investigate sulfur speciation in soil samples treated with CPS in batch and column studies and to determine the source of the reducing potential. Bulk XANES spectra indicated the presence of two dominant sulfur species: elemental sulfur, which is the product of the sulfide-chromate redox reaction, and thiosulfate (S2O3(2-)). Micro-XANES analyses confirmed these findings and showed that elemental sulfur precipitated as large particles, while thiosulfate was diffused within the soil grains and thus available to react with chromate that leached from slowly dissolving PbCrO4. Micro-X-ray fluorescence (μXRF) analyses indicated a close association of Pb and thiosulfate, so that PbS2O3 is a likely sink for thiosulfate, accounting for up to 20% of the total S added. Sorption of thiosulfate on iron oxides below pH 8 is a second retention mechanism for thiosulfate in the solid. Given that thiosulfate cannot reduce chromate but can reduce solid-bound Fe(III) under neutral pH conditions, it is hypothesized that ferrous iron production is an additional mechanism to maintain reductive conditions in CPS-treated soils.
منابع مشابه
Processes affecting the remediation of chromium-contaminated sites.
The remediation of chromium-contaminated sites requires knowledge of the processes that control the migration and transformation of chromium. Advection, dispersion, and diffusion are physical processes affecting the rate at which contaminants can migrate in the subsurface. Heterogeneity is an important factor that affects the contribution of each of these mechanisms to the migration of chromium...
متن کاملProduction of a microcapsule agent of chromate-reducing Lysinibacillus fusiformis ZC1 and its application in remediation of chromate-spiked soil
Lysinibacillus fusiformis ZC1 is an efficient Cr(VI)-reducing bacterium that can transform the toxic and soluble chromate [Cr(VI)] form to the less toxic and precipitated chromite form [Cr(III)]. As such, this strain might be applicable for bioremediation of Cr(VI) in soil by reducing its bioavailability. The study objective was to prepare a microcapsule agent of strain ZC1 for bioremediation o...
متن کاملImpact of the earthworm Lumbricus terrestris ( L . ) on As , Cu , Pb and Zn mobility 1 and speciation in contaminated
17 To assess the risks that contaminated soils pose to the environment properly a greater 18 understanding of how soil biota influence the mobility of metal(loid)s in soils is 19 required. Lumbricus terrestris L. were incubated in three soils contaminated with As, 20 Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the 21 mobility and partitioning in casts were...
متن کاملReduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil
Hexavalent chromium-resistant Ochrobactrum intermedium BCR400 was isolated from chromium contaminated soil collected from Vadodara, Gujarat. It reduced 100 mg Cr(VI)/L completely in 52 h with initial Cr(VI) reduction rate of 1.98 mg/L/h. The Cr(VI) reduction rate decreased with increase in Cr(VI) concentration from 100 to 500 mg/L. The addition of anthraquinone-2-sulphonic acid (AQS) to culture...
متن کاملCalcium polysulfide treatment of Cr(VI)-contaminated soil.
Batch treatability studies for a Cr(VI)-contaminated glacial soil from a Cr plating facility were conducted using 1X and 2X the stoichiometric ratio of calcium polysulfide (CPS). The pH of the treated soil increased from 6 to 11 upon CPS addition, but progressively returned to 8-8.5 over the course of 1 year. The 1X dosage maintained a highly reducing environment up to 21 days of monitoring wit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hazardous materials
دوره 281 شماره
صفحات -
تاریخ انتشار 2015